Onezeroart LLC

Zal Ultra ISP CRM API Authentication System

Innovative Web Applications & Software Solutions For Businesses

API Authentication Token

This API endpoint allows users to authenticate and obtain a Bearer token required for all subsequent API requests. The token must be included in the
Authorization header of every API call to access protected endpoints.

Endpoint Information

/api/auth-login

Authentication Flow

How Authentication Works

1. Step 1: Send login credentials to /api/auth-login
2. Step 2: Receive Bearer token in response
3. Step 3: Include token in Authorization header for all API requests

4. Step 4: Token remains valid until logout or expiration

| Request Parameters

All parameters should be sent in the request body as JSON or form data.

email String User's email address for authentication
password String User's password for authentication

Request Example

JSON Request Body

{ "email": "user@example.com", // Required: User's email address "password": "your_password" // Required:

User's password }

cURL Example

curl -X POST "https://your-domain.com/api/auth-login" \ -H "Content-Type: application/json" \ -d '{ "email":
"user@example.com", "password": "your_password" }'

Response Format

Success Response

HTTP Status: 200 OK

{ "access_token": "1|eyJ0eXAi01JKV1QiLCJIhbGci0iJIUzI1N1J9...", // Bearer token for API authentication "user":
{ // Authenticated user information "id": 123, "name": "John Doe", "email": "user@example.com",
"profile_type": 2, // User role/permission level "branch_id": 1, "isp_id": 1, '"created_at": "2024-01-
15T10:30:00.000000Z2", "updated_at": "2024-01-15T14:30:00.000000Z" } }

Error Responses

Authentication Errors
HTTP Status: 401 Unauthorized

Invalid Credentials

{ "message": "Invalid Credentials" }

Missing Required Fields

{ "message": "The email field is required.", "errors": { "email": ["The email field is required."],
"password": ["The password field is required."] } }

Account Disabled

{ "message": "Account 1is disabled or suspended" }

Using the Bearer Token

Once you receive the authentication token, you must include it in the Authorization header of all subsequent API requests:

Authorization Header Format

Authorization: Bearer 1|eyJOeXAi0iJKV1QiLCJhbGciO0iJIUzI1NiJ9...

Example API Request with Token

curl -X POST "https://your-domain.com/api/vl/subscriber/activation" \ -H "Content-Type: application/json" \ -

H "Authorization: Bearer 1|eyJ0eXAi0iJKV1QiLCJhbGciOiJIUzIINiJ9..." \ -d '{ "subscriber_id": 12345 }'

Token Management

Important Token Guidelines

e Security: Never expose your Bearer token in client-side code or logs

o Storage: Store tokens securely (encrypted storage, environment variables)
o Token Format: Tokens are prefixed with an ID (e.g., "1|actualtoken...")

¢ Revocation: Tokens can be revoked by calling the logout endpoint

e Scope: Each token is tied to a specific user account and permissions

Token Validation Errors

If your token is invalid, expired, or missing, APl endpoints will return:

{ "message": "Unauthenticated." } // HTTP Status: 401 Unauthorized

Integration Best Practices

1. Implement Token Refresh: Automatically refresh tokens before they expire

2. Handle 401 Errors: Redirect to login when receiving unauthorized responses

3. Secure Storage: Use secure storage mechanisms for token persistence

4. Error Handling: Implement comprehensive error handling for authentication failures
5. Logout Functionality: Provide users with ability to invalidate tokens

6. Rate Limiting: Respect authentication rate limits to avoid account lockouts

| User Profile Types

The authentication response includes a profile_type field that determines user permissions:

1 Admin Full system access and management
2 Salesperson Subscriber management and transactions
3 Reseller Limited subscriber management within hierarchy
4 Sub-Reseller Restricted subscriber operations
5 Retailer Basic subscriber operations
Testing

Authentication Testing Checklist

o Test with valid credentials to ensure token generation
e Test with invalid credentials to verify error handling

¢ Test with missing fields to validate input requirements
o Test token usage in subsequent API calls

o Test token expiration and refresh scenarios

» Verify proper error responses for unauthorized requests

API Documentation - Authentication Token Endpoint

Onezeroart LLC

Zal Ultra ISP CRM API Integration For Subscriber Balance Management

Innovative Web Applications & Software Solutions For Businesses

Add Subscriber Balance API

This API endpoint allows authorized users (salespersons, resellers, sub-resellers, retailers) to add balance to a subscriber's account. The API includes
comprehensive validation, permission checks, and duplicate payment prevention.

Endpoint Information

/api/vl/subscriber/payments/add-balance

Authentication

This API requires Bearer token authentication. You must first obtain a token from the /api/auth-1login endpoint and include it in the Authorization

header of your request.

Required Authentication Steps

1. Step 1: Get Bearer token from POST /api/auth-1login with email/password
2. Step 2: Include token in Authorization header: Authorization: Bearer {token}

3. Step 3: User must be a salesperson, reseller, sub-reseller, or retailer with appropriate permissions

Permission Requirements:

o Users with profile_type >= 3 (resellers, sub-resellers, retailers) can only update subscribers they have permission to manage

¢ The system validates user permissions before processing the payment

| Request Parameters

All parameters should be sent in the request body as JSON or form data.

subscriber_id Integer REQUIRED The unique ID of the subscriber to add balance to

payment_amount Numeric The amount to add to subscriber's balance (must be a valid number)
payment_method Integer Payment method ID (defaults to 1 for cash payment)

payment_note String Additional note for the payment (defaults to "Salesperson Balance Topup")

salesperson_balance_cut_status Boolean/Integer Whether to deduct the amount from salesperson's balance

| Payment Methods

Understanding payment methods is crucial for proper API integration. Each method has specific behavior and requirements.

Cash Default payment method for manual transactions When no payment_method specified (default)
4 Subscriber Balance Internal balance transfer (not applicable for adding balance) Used in other operations
6 bKash Mobile financial service payment Popular choice for mobile payments

Request Example

JSON Request Body

{ "subscriber_id": 12345, // Required: ID of subscriber to add balance to "payment_amount": 500.00, //

Required: Amount to add to subscriber's balance "payment_method": 1, // Optional: Payment method ID (1=Cash,

6=bKash, etc.) "payment_note": "Monthly balance topup", // Optional: Note for the payment transaction
"salesperson_balance_cut_status": 1 // Optional: 1=Deduct from salesperson balance, 0=Don't deduct }

cURL Example

curl -X POST "https://your-domain.com/api/vl/subscriber/payments/add-balance" \ -H "Content-Type:
application/json" \ -H "Authorization: Bearer eyJ0eXAi0iJKV1QiLCJhbGciOiJIUzIAINiJ9..." \ -d '{
"subscriber_id": 12345, // Required: ID of subscriber to add balance to "payment_amount": 500.00, //
Required: Amount to add to subscriber balance "payment_method": 1, // Optional: 1=Cash payment method
"payment_note": "Monthly balance topup", // Optional: Description for the payment
"salesperson_balance_cut_status": 1 // Optional: Deduct from salesperson balance }'

Response Format

All responses are returned in JSON format with a consistent structure.

Success Response

HTTP Status: 200 OK

{ "status": "success", // Response status: "success" or "error" "message'": "Balance added successfully", //
Human-readable success message '"data": { // Payment transaction details "payment_id": 67890, // Unique
payment ID for reference "subscriber_id": 12345, // ID of subscriber who received balance "amount_added":
500.00, // Amount successfully added to balance "new_balance": 1500.00, // Subscriber's new total balance
after addition "payment_date": '"2024-01-15 14:30:25" // Timestamp when payment was processed } }

Error Responses

Validation Errors
HTTP Status: 200 OK (with error status in response body)
Missing Required Fields

{ "status": "error", "message": "The subscriber id field is required.The payment amount field is required." }
// status: Response status indicating failure // message: Concatenated validation error messages

Invalid Payment Amount

{ "status": "error", "message": "The payment amount must be a number." } // status: Response status

indicating failure // message: Error when payment_amount is not numeric

Business Logic Errors

Subscriber Not Found

{ "status": "error", "message": "Subscriber Not Found" } // status: Response status indicating failure //
message: Error when subscriber_id doesn't exist in database

Salesperson Not Found

{ "status": "error", "message'": "Subscriber Salesperson Not Found" } // status: Response status indicating
failure // message: Error when subscriber's assigned salesperson is missing

Insufficient Permissions

{ "status": "error", "message": "Oops! Insufficient Permission" } // status: Response status indicating
failure // message: Error when user lacks permission to manage this subscriber

Duplicate Payment Prevention

{ "status": "error", "message": "Too Frequent Payments! Please Wait 1 Minute & Try Again." } // status:

Response status indicating failure // message: Error when same amount added within 60 seconds

Important Notes

Duplicate Payment Prevention
The API prevents duplicate payments by checking if:

¢ The same payment amount was added within the last 60 seconds

o If a duplicate is detected, the user must wait 1 minute before trying again

Permission System
The API enforces strict permission checks:

¢ Resellers can only add balance to their own subscribers and their sub-resellers'/retailers' subscribers
e Sub-resellers and retailers have similar hierarchical permission restrictions

e The system validates these permissions before processing any payment

Integration Tips

1. Always validate subscriber_id: Ensure the subscriber exists and you have permission to manage them
2. Handle duplicate prevention: Implement retry logic with appropriate delays if you receive the "Too Frequent Payments" error
. Check response status: Always check the "status" field in the response to determine if the operation was successful

. Store payment references: Save the returned payment_id for your records and future reference

g A~ W

. Implement proper error handling: Handle all possible error scenarios gracefully in your application

Testing

Before integrating this API into your production system:
o Test with valid subscriber IDs that you have permission to manage

e Test with invalid subscriber IDs to ensure proper error handling
o Test the duplicate payment prevention by making consecutive requests

o \Verify that permission checks work correctly for your user type

APl Documentation - Add Subscriber Balance Endpoint

Onezeroart LLC

Zal Ultra ISP CRM API Integration For Subscriber Activation/Invoice Generation

Innovative Web Applications & Software Solutions For Businesses

Subscriber Activation API

This API endpoint allows authorized users to activate subscribers with package assignments, billing generation, payment processing, and RADIUS
integration. The API handles complex business logic including invoice generation, payment validation, profit distribution, and subscriber profile updates.

Endpoint Information

/api/vl/subscriber/activation

Authentication

This API requires Bearer token authentication. You must first obtain a token from the /api/auth-1login endpoint and include it in the Authorization

header of your request.

Required Authentication Steps
1. Step 1: Get Bearer token from POST /api/auth-1login with email/password
2. Step 2: Include token in Authorization header: Authorization: Bearer {token}

3. Step 3: User must be a salesperson, reseller, sub-reseller, or retailer with appropriate permissions

Important Business Rules:

e Only authorized salespersons can activate subscribers assigned to them
e Package accounting validation is performed before activation
¢ Duplicate invoice prevention: Only one due invoice per hour is allowed

o Subscriber discount cannot exceed salesperson profit (except for admin users)

| Request Parameters

All parameters should be sent in the request body as JSON or form data.

subscriber_id Integer REQUIRED The unique ID of the subscriber to activate
payment_amount Numeric Payment amount for activation (if paying during activation)

Payment method ID (defaults to 1 for cash, 6 for bKash when payment_amount

ayment_method Integer OPTIONAL
pay N J - provided)

. Set to 1 to deduct activation fee from subscriber's existing balance (payment_method
cut_subscriber_balance = Boolean/Integer
becomes 4)

| Payment Methods

Understanding payment methods is crucial for proper API integration. Each method has specific behavior and requirements.

Cash Default payment method for manual transactions When no payment_method specified
4 Subscriber Balance Deduct from subscriber's existing balance Automatically set when cut_subscriber_balance = 1
6 bKash Mobile financial service payment Default when payment_amount is provided

Activation Process Flow

Step 1: Validation

o \Validate subscriber existence and associated salesperson/package data
o Check for existing due invoices (within last hour)
o Verify package accounting permissions for the salesperson

o Validate package accounting rules

Step 2: Payment Processing (if applicable)

e Process payment if payment_amount is provided
o Create ledger entries for payment tracking

o Validate subscriber balance if cut_subscriber_balance is enabled

Step 3: Billing & Invoice Generation

o Calculate package fees, extra fees, and subscriber discounts
e Generate invoice with calculated amounts

o Apply subscriber discounts (cannot exceed salesperson profit)

Step 4: Activation & RADIUS Integration

e Process payment and update invoice status
e Activate subscriber in RADIUS system
o Distribute profits to reseller hierarchy

e Update subscriber profile with new package and expiration

Request Examples

Basic Activation (Generate Invoice Only)

{ "subscriber_id": 12345 // Required: ID of subscriber to activate }

Activation with Payment

{ "subscriber_id": 12345, // Required: ID of subscriber to activate "payment_amount": 1500.00, // Optional:
Amount to pay during activation "payment_method": 6 // Optional: 6 = bKash (default when payment_amount
provided) }

Activation Using Subscriber Balance

{ "subscriber_id": 12345, // Required: ID of subscriber to activate "cut_subscriber_balance": 1 // Optional:
1 = Use subscriber's existing balance (payment_method becomes 4) }

cURL Example

curl -X POST "https://your-domain.com/api/vl/subscriber/activation" \ -H "Content-Type: application/json" \ -
H "Authorization: Bearer eyJOeXAiO0iJKV1QiLCJhbGciOiJIUzI1INiJ9..." \ -d '{ "subscriber_id": 12345, //
Required: ID of subscriber to activate "payment_amount": 1500.00, // Optional: Amount to pay during
activation "payment_method": 6 // Optional: 6 = bKash payment method }'

Response Format

Success Response

HTTP Status: 200 OK

{ "status": "success", // Response status: "success" or "error" "message": "Subscriber Activated
Successfully.", // Human-readable success message '"subscriber_id": 12345, // ID of the activated subscriber
"subscriber_username": "john_doe", // Username of the activated subscriber "invoice_data": { // Generated
invoice information "id": 67890, // Unique invoice ID for reference "billing_total_amount": 1500.00, // Total
invoice amount "billing_due_amount": 0.00, // Remaining due amount (O if fully paid) "activation_status": 1,
// 1 = Activated, © = Not activated "invoice_status": 1 // Invoice status (1 = Paid, 6 = Due) 1},
"subscriber_data": { // Updated subscriber profile information "id": 12345, // Subscriber ID "username":
"john_doe", // Subscriber username "profile_status": 2, // 2 = Active profile "package_id": 15, // Assigned
package ID "expiration_date": "2024-02-15 14:30:25", // New package expiration date "last_activation_time":
"2024-01-15 14:30:25" // Timestamp of activation } }

Error Responses

Validation Errors
HTTP Status: 422 Unprocessable Entity
Missing Required Fields

{ "status": "error", "message": ["The subscriber id field is required."] } // status: Response status
indicating failure // message: Array of validation error messages

Business Logic Errors

Subscriber Not Found

{ "status": "error", "message": "Subscriber Not Found" } // status: Response status indicating failure //
message: Error message when subscriber_id doesn't exist

Invalid Salesperson or Package Data

{ "status": "error", "message": "Invalid Salesperson or Package Data" } // status: Response status indicating
failure // message: Error when salesperson/package validation fails

Existing Due Invoice

{ "status": "error", "message": "Due Invoice Already Exist (Wait 1 Hour to Generate New One Or Pay On Due
Invoice)", "invoice_id": 67889, "due_amount": 1500.00, "subscriber_id": 12345 } // status: Response status
indicating failure // message: Error message with instructions // invoice_id: ID of existing due invoice //
due_amount: Amount due on existing invoice // subscriber_id: Subscriber ID for reference

Package Validation Failed

{ "status": "error", "message": "Package Validation Failed" } // status: Response status indicating failure
// message: Error when package accounting validation fails

Excessive Subscriber Discount

{ "status": "error", "message": "Too Much Subscriber Discount" } // status: Response status indicating
failure // message: Error when discount exceeds salesperson profit

Insufficient Subscriber Balance

{ "status": "error", "message": "Insufficient Subscriber Balance Required (1500.00)" } // status: Response

status indicating failure // message: Error with required amount when balance is insufficient

Important Business Rules

Invoice Generation Rules

¢ One Hour Rule: Only one due invoice can be generated per subscriber per hour
o Package Validation: Salesperson must have accounting permissions for the subscriber's package

¢ Discount Limits: Subscriber discount cannot exceed salesperson profit (admin users exempt)

Payment Processing

¢ Prepaid Billing: Full payment required before activation
o Balance Validation: Subscriber balance must cover total activation fee when using balance payment

+ Profit Distribution: Salesperson profits are distributed through the reseller hierarchy

RADIUS Integration

o Automatic Activation: Subscriber is activated in RADIUS upon successful payment
o Package Assignment: New package settings are applied to subscriber profile

o Expiration Management: New expiration date is calculated and set

Integration Guidelines

1. Validate Subscriber Status: Ensure subscriber exists and is assigned to your salesperson account

N

. Check Package Permissions: Verify you have accounting permissions for the subscriber's package
. Handle Due Invoices: Check for existing due invoices and handle the 1-hour waiting period

. Payment Validation: Ensure payment amount covers the full activation fee for successful activation

g A~ W

. Balance Management: When using subscriber balance, verify sufficient funds before making the request
6. Error Handling: Implement comprehensive error handling for all business logic scenarios

7. Invoice Tracking: Store returned invoice data for future reference and payment tracking

Testing Scenarios

Test Cases to Implement

e Basic activation without payment (invoice generation only)
e Activation with full payment (complete activation flow)

e Activation using subscriber balance

e Handling existing due invoices

o Testing insufficient balance scenarios

e Validating package permission restrictions

e Testing discount limit validations

Common Integration Patterns

Two-Step Activation Process

// Step 1: Generate invoice POST /api/vl/subscriber/activation { "subscriber_id": 12345 } // Required: ID of

subscriber to activate // Step 2: Process payment (if invoice generated successfully) curl -X POST
"https://your-domain.com/api/vl/subscriber/payments/add-balance”" \ -H "Content-Type: application/json" \ -H
"Authorization: Bearer eyJO0eXAi0iJKV1QiLCJhbGci0iJIUzI1INiJ9..." \ -d '{ "subscriber_id": 12345, // Required:
Same subscriber ID "payment_amount": 1500.00, // Required: Amount to pay "payment_method": 6 // Optional: 6 =
bKash payment }'

One-Step Activation with Payment

// Complete activation in single request curl -X POST "https://your-domain.com/api/v1l/subscriber/activation"
\ -H "Content-Type: application/json" \ -H "Authorization: Bearer eyJ0eXAi0iJKV1QiLCJhbGciOiJIUzI1INiJ9..." \
-d '"{ "subscriber_id": 12345, // Required: ID of subscriber to activate "payment_amount": 1500.00, //

Optional: Amount to pay during activation "payment_method": 6 // Optional: 6 = bKash payment method }'

API Documentation - Subscriber Activation Endpoint

